South Africa Flag logo

South African Skeptics

September 25, 2017, 01:03:53 AM
Welcome, Guest. Please login or register.
Did you miss your activation email?

Login with username, password and session length
Go to mobile page.
News: Please read the posting guidelines before posting.
   
   Skeptic Forum Board Index   Help Forum Rules Search GoogleTagged Login Register Chat Blogroll  
Pages: [1]   Go Down
  Print  
Author Topic:

How about this?

 (Read 2832 times)
0 Members and 1 Guest are viewing this topic.
Tweefo
Hero Member
*****

Skeptical ability: +9/-0
Offline Offline

Posts: 1463



WWW
« on: October 18, 2014, 14:09:16 PM »

I did not know about the dust cloud on the Moon. Amazing.

Quote
Brian Koberlein
Shared publicly  -  Yesterday 1:46 PM
 
Short Circuit

If you’ve ever experienced a thunderstorm, you’re well familiar with the ability of Earth to build a static charge on its surface. When that static build-up reconnects with a similar build-up in the sky, the resulting current is seen as lightning. We’ve long known that a similar static buildup can occur on other solar system bodies. We’ve observed lightning storms on Jupiter, Saturn and Venus, for example. Of course these planets all have thick atmospheres, so what about bodies without atmospheres?

One example we know of is the Moon. Data from the Lunar Prospector mission found that the portions of the Moon’s surface could build electrostatic potentials as high as 4,50o volts. They are generated either when the Moon passes through Earth’s magnetotail, or when a solar storm bombards the Moon with charged particles. With no atmosphere the Moon can’t discharge these as lightning, so it generally leaves the surface gradually.  Sometimes static charge can build within the dust of the lunar surface. The charged dust particles repel each other, and this can create levitated dust clouds. Such an effect was seen during the Apollo missions.

It has generally been thought that charge could build on the surface of other airless bodies, but there hasn’t been any direct evidence of it. Now a new paper confirms the effect for Saturn’s moon Hyperion. The authors looked at data from the Cassini mission, specifically a detector known as the Cassini Plasma Spectrometer (CAPS). This device looks at the energy of charged particles striking Cassini. During a close approach of Hyperion, CAPS detected a strong current of electrons. It was a discharge of about 200 volts over a distance of 2,000 kilometers.

Hyperion doesn’t interact strongly with Saturn’s magnetosphere, so it’s thought that the moon’s charge build-up is due to ultraviolet light striking its surface, which can knock electrons away from the surface via the photoelectric effect. This supports the idea that other outer planet moons can experience similar charges on their surface.

Just as we can get a charge out of seeing our spacecraft make a close approach of a moon, it seems the spacecraft itself can also get a charge.
Logged
Tweefo
Hero Member
*****

Skeptical ability: +9/-0
Offline Offline

Posts: 1463



WWW
« Reply #1 on: October 23, 2014, 12:08:30 PM »

The hunt for dark matter. http://www.universetoday.com/115551/is-dark-matter-coming-from-the-sun/
Logged
brianvds
Hero Member
*****

Skeptical ability: +12/-0
Offline Offline

Posts: 1557



« Reply #2 on: October 23, 2014, 15:26:54 PM »

Turns out the matter wasn't dark after all. It was just hidden behind the dust cloud on the Moon.   Evil
Logged
Tweefo
Hero Member
*****

Skeptical ability: +9/-0
Offline Offline

Posts: 1463



WWW
« Reply #3 on: November 03, 2014, 17:57:58 PM »

Quote
Brian Koberlein
Shared publicly  -  2:47 PM
 
Ancient Seas

For an inner planet, Earth is bountiful with water. The origin of that water has been a matter of some debate. One idea is that a combination of Earth’s strong magnetic field and distance from the Sun allowed Earth to retain much of the water emitted from rocks as the planet cooled. Another is that water came to Earth through cometary or asteroid bombardment. But now it seems the origin of Earth’s water is more complex and more interesting that we’ve thought.

Last month an article in Science showed that much of Earth’s water existed before the formation of the solar system. The authors demonstrated this by looking a levels of deuterium in terrestrial water. Deuterium is an isotope of hydrogen that has a proton and neutron in its nucleus, rather than just a proton. As a result, it’s almost twice as heavy as regular hydrogen, and this means the way it chemically reacts is slightly different from regular hydrogen.

Deuterium isn’t very common compared to hydrogen, and exists at about 26 parts per million. When the team measured levels of deuterium in the water of Earth and other solar system bodies, they found the water contained deuterium at about 150 parts per million. This is interesting, because deuterium water is more likely to form in interstellar space. Water formed in the heat of a young solar system isn’t likely to produce much deuterium water. Given measured deuterium levels, the authors calculate that about half of Earth’s water was produced in the depths of space, before the solar system was formed.

This month another paper in Science found that water arrived on Earth earlier than expected. In this paper the team compared chondrite minerals on Earth with chondrite asteroids, specifically ones that likely originated from Vesta. Chondrite asteroids have a high quantity of water chemically bound to them, and one idea is that they could have been the source of Earth’s water. When they looked at the chemical makeup of terrestrial chondrites, they found them to be remarkably similar. This likely means terrestrial chondrites were themselves the source of Earth’s water. If that’s the case, then Earth was likely a water world a hundred million years earlier than the bombardment model predicts.

So it seems that Earth’s seas are more ancient both in origin and composition than we once thought.

Image:  Kuyan Redman

Paper: Cleeves, L. I., et al. The ancient heritage of water ice in the solar system. Science, 345 (6204), p. 1590 – 1593 (2014)

Paper: Sarafian et al. Early accretion of water in the inner solar system from a carbonaceous chondrite–like source. Science, 346 (6209) p. 623-626 (2014)
Logged
Brian
Hero Member
*****

Skeptical ability: +8/-1
Offline Offline

Posts: 1354


I think therefor I am, I think


« Reply #4 on: November 04, 2014, 14:57:03 PM »

Quote
Last month an article in Science showed that much of Earth’s water existed before the formation of the solar system.
you see godidit!
Logged
Tweefo
Hero Member
*****

Skeptical ability: +9/-0
Offline Offline

Posts: 1463



WWW
« Reply #5 on: November 17, 2016, 07:55:34 AM »

What else is out there? http://www.dailymaverick.co.za/article/2016-11-16-a-giant-leap-for-astronomy-another-giant-leap-for-south-africa/ I would have liked an explanation on
Quote
The discovery, which explained a previously misunderstood phenomenon known as the Great Attractor, was a major breakthrough.
What was this major breakthrough?
Logged
Mefiante
Defollyant Iconoclast
Hero Member
*****

Skeptical ability: +60/-9
Offline Offline

Posts: 3678


In solidarity with rwenzori: Κοπρος φανεται


WWW
« Reply #6 on: November 17, 2016, 09:59:11 AM »

What was this major breakthrough?
The discovery of the proposed new Vela supercluster, which is the likely explanation behind a mysterious phenomenon known as “Great Attractor.”

'Luthon64
Logged
Tweefo
Hero Member
*****

Skeptical ability: +9/-0
Offline Offline

Posts: 1463



WWW
« Reply #7 on: November 17, 2016, 11:12:18 AM »

What was this major breakthrough?
The discovery of the proposed new Vela supercluster, which is the likely explanation behind a mysterious phenomenon known as “Great Attractor.”

'Luthon64
Thanks, I knew about this but then thought I missed something when reading the one this morning. Spend so much time on the road during the last few weeks I was a bit zombified.
Logged
Pages: [1]   Go Up
  Print  
GoogleTagged: google com


 
Jump to:  

Powered by SMF 1.1.11 | SMF © 2006-2009, Simple Machines LLC
Page created in 0.246 seconds with 23 sceptic queries.
Google visited last this page September 04, 2017, 06:24:09 AM
Privacy Policy